A User-Friendly Approach to Human Authentication of Messages

Jeff King

André dos Santos

Georgia Institute of Technology

 $\{peff, and re\}@cc.gatech.edu$

1

Motivation

- Suppose Alice is on a trip to a computer security conference.
- Alice has to digitally sign an important document to send to a colleague back at the office.
- She uses one of the conference's computers to, using her smart card, sign the document and send through e-mail.

Problem Solved?

- Did she really sign the document?
- What did the smartcard actually receive?
- How does Alice know it's the same thing that was on her screen?
- How does she know if anything was even sent to her card?

The Problem

• How can a human interact with a (remote) Trusted Computing Base using an untrusted computing system?

Solutions

- Use a trusted computing system to interact
 - availability?
 - security perimeter?
- Directly interact with TCB
 - extra hardware?
 - complexity and tamper resistance?
- Require the human to be a trusted computing system!

TCB to Human Secure Channel Requirements

- Human must recognize some unique secret held only by TCB (authenticity)
- Inseparable binding of secret to message contents (integrity)
- Easy for a human to do without computation or memory aid

Outline

- Motivation
- Definition of Keyed Hard AI Problems (KHAP)
- KHAP Using 3-D images
- KHAP-Based Protocol
- Conclusion
- Future Work

Hard AI Problems

- Informally, something that humans can do easily but computers can't.
- More formally (von Ahn, 2003)
 - S a set of problem instances
 - f a function mapping instances to answers
 - For human H, H(x) = f(x) with high probability
 - Security parameters (α, τ)-hard
 - For any algorithm A running in time τ , $Pr[A(x) = f(x)] \le \alpha$
- CAPTCHA Completely Automated Turing Test to Tell Computers and Humans Apart
- Generate random message, transform it, ask human to repeat it

KHAP: Keyed Hard AI Problems

- A transformation problem that includes a shared secret key
- Instances generated with different keys are **distinguishable**
- Computers can't steal keys from messages
- Formalisms (simplified):
 - $H_d(m,m')$ human distinguishes between messages with different keys
 - |k k'| difference between two keys (quantifiable?)
 - Security parameters $(\alpha,\epsilon,\tau)\text{-hard}$
 - Given $|k k'| > \epsilon$, $Pr[H_d(m, m')] > \alpha$
 - For any algorithm A running in time τ , $Pr[H_d(m, A(m', m))] > \alpha$

KHAP: Checking Message Authenticity

KHAP: Checking Message Authenticity

KHAP: Parameters

- Desirable:
 - Easy for a human to understand the message.
 - Easy for a human to distinguish messages with different keys.
 - Difficult for a computer to "break"
 - * Change message meaningfully
 - * Extract keys
 - * Extract message?
- Parameters define difficulty and easiness
- Different applications have different parameter requirements
- Problem: how to evaluate parameters for a given problem
- Solution: empirical testing

3-D Keyed Transformation

- Render text and objects in a 3-D scene to 2-D image (raytrace)
- Randomize parameters (lighting, position, rotation, size, colors)
- Human can read text from 2-D image
- Key is appearance of certain objects
- Human looks for particular objects in scene
- Scene is hard to modify in a meaningful way (shadows, reflections, finding objects)
- Provide authenticity (presence of keys) and integrity (modifications can be detected by human)

3-D Example

Attacks

- Key Guessing
- Convert from 2-D to 3-D
- Extract Key
 - Only one perspective
- Modify 2-D message
- Replays
- Human Adversary
 - The most powerful
 - May not be able to describe key and/or modify scene in time
 - Beauty of the approach: The intended recipient does not have to describe the key!

Easy to guess keys?

VS

Tradeoffs

- Easy for humans to recognize message
 - Choice of parameters (text size, fonts, colors, etc) needs to be bounded
 - Message length limitations
 - Maybe by itself static 3-D is not a good domain (animation?)
- Difficult for computers to fake image or extract key
 - Mirror reflections and shadows make cut and paste difficult
 - Obstructions of line of sight make it difficult to reconstruct 3-D keys
 - Text embedded in objects makes cut and paste difficult
- Recognizing fake image
 - How close is close enough? Small changes (1 char)?

Pluggable Problems

- Hard AI problems are "pluggable" into applications
- 3-D KHAP (already discussed)
- Speech KHAP
 - message is speech-synthesized audio clip
 - key is voice parameters; user recognizes voice (parameters selected randomly at key generation)
 - audio distortion used to increase difficulty of analysis
- Handwriting KHAP
 - message is rendered using handwriting sample
 - key is writing style; user recognizes (too hard?)
 - visual distortion used to increase difficulty of analysis

Protocol: Human sends to TCB

How can step 5 be performed?

Human to TCB Confirmation

- Only one bit is needed.
- Insertion or extraction of a portable device
 - Does not work for remote trusted server
 - Extraction: timing depends on application
 - Insertion to confirm is awkward
- Confirmation word/object
 - Pre-arranged (requires memory aid!) or type/click element from KHAP
 - Requires no special devices
 - Human adversary can be effective

Confirmation Word Example

Conclusions

- Approach is general (mobile device, network, etc)
- Many of the techniques map directly to what humans to do insure security in pencil and paper world
 - Nobody signs a document that has patches covering some words
 - People authenticate each other on the phone by voice characteristics
- Secure
 - Security depends on AI problem parameters
 - Advances in AI break problems (as factoring breaks RSA)
- Easy to use
 - Avoid computation, memory aids: ask humans to do what they do best
 - Some problems are intuitive (e.g., recognizing voice)

Future Work

- Develop specific KHAP problems
 - Evaluate usability (empirical studies)
 - Evaluate security (empirical + expert opinion)
- Collaboration with AI, graphics, speech, human-computer interactions, OCR
- Performance issues for low-power devices
- Key generation and re-keying
- Analyze human attacks (general and specific applications)

Questions?