Defeating Malicious Terminals in an Electronic Voting System

Andre dos Santos

Jeff King

Georgia Tech Information Security Center

Overview

Motivation
Related Work
Protocol
Examples
Analysis

Motivation

The Voting Problem

Traditional Approach

Electronic Voting

Motivation: The Voting Problem

■ Scenario: Alice, a human, wishes to transmit message c ∈ C to central tallier, Trent.

Security requirements

- Anonymity
- Accuracy
- etc.

Motivation: Traditional Approach

Paper-based systems

Alice creates physical vote record and relays the vote to Trent.

Disadvantages

- Inaccurate
- Expensive
- Advantages
 - Simple, usable
 - Secure (?)

Motivation: Electronic Voting

Current state of electronic voting systems

- Systems entrust untrustworthy voting terminals, volunteers
- Security policy dictates isolation and physical controls
- Advantages
 - Relatively inexpensive
 - Accurate
- Disadvantages
 - Fails to use public infrastructure
 - Vulnerable to automated attacks
 - Vulnerable to undetectable attacks

Motivation: Electronic Voting

Current state of electronic voting systems

- Systems entrust untrustworthy voting terminals, volunteers
- Security policy dictates isolation and physical controls
- Advantages
 - Relatively inexpensive
 - Accurate
- Disadvantages
 - Fails to use public infrastructure
 - Vulnerable to automated attacks
 - Vulnerable to undetectable attacks

Motivation: Electronic Voting

Solution: Blind signature protocol with trustworthy hardware

- Direct communication with Trent infeasible!
- Trustworthy voting terminals costly!
- Personal tamper resistant device yes!
- Problem: How can we establish a trusted path between Alice and her voting device?
 - Direct I/O? Form factor prohibits this.
 - Via voting terminal? No!
 - CAPTCHA-Voting Protocol?
 - I Other schemes (Chaum, Prêt-à-Voter, KHAP)
 - Voter performs verification and auditing steps.

Related Work

Completely Automated Publicly Available Turing Tests to tell Computers and Humans Apart (CAPTCHAs)

One-time random substitution

Protocol: Actors

Alice a human voter

Trent a central tallier, trusted to perform complex, anonymous operations on Alice's behalf

Mallory an untrusted voting terminal

- Public list of candidates $C = [c_1, c_2, \dots, c_n]$
- Public, random set $R = [r_1, r_2, \dots, r_m]$ such that $m \ge n$
- Random mapping of candidates to random elements $K: C \rightarrow R$ such that
 - $P(K(c) = r_i) = P(K(c) = r_j)$ for all *i*, *j*
 - $K^{-1}: R \to C$
- CAPTCHA transformation function *T(m)* such that Mallory cannot derive *m* from *T(m)*, while Alice may infer *m* from *T(m)*
 - Trent may encode K using T. This is denoted by T(K).

1. Trent generates and sends a CAPTCHA-encrypted ballot.

1. Trent generates and sends a CAPTCHA-encrypted ballot.

1.1. *K* : *C* → *R* 1.2. *T*(*K*)

1. Trent generates and sends a CAPTCHA-encrypted ballot.

1.1. *K* : *C* → *R* 1.2. *T*(*K*)

1.3. *T(K)*

2. Alice responds with the encrypted candidate.

1.1. *K* : *C* → *R* 1.2. *T*(*K*)

1.3. *T(K)*

2.1. $T^{-1}(T(K)) = K$

2. Alice responds with the encrypted candidate.

1.1. *K* : *C* → *R* 1.2. *T*(*K*)

1.3. *T(K)*

2.1. $T^{-1}(T(K)) = K$ 2.2. K(c) = r

2. Alice responds with the encrypted candidate.

1.1. *K* : *C* → *R* 1.2. *T*(*K*)

1.3. *T(K)*

2.3. r

2.1. $T^{-1}(T(K)) = K$ 2.2. K(c) = r

3. Trent decrypts Alice's preferred candidate.

1.1. *K* : *C* → *R* 1.2. *T*(*K*)

1.3. *T(K)*

2.1. $T^{-1}(T(K)) = K$ 2.2. K(c) = r

2.3. r

Examples

Text CAPTCHA

■ 3D Animation CAPTCHA

Audio CAPTCHA

Example: Text CAPTCHA

R consists of distinct regions in image.

T renders mapping as image and contributes noise.

Example: 3D Animation CAPTCHA

R consists of equally sized, contiguous sets of frames.

■ *T* renders candidate names in animation.

Example: Audio CAPTCHA

K is a similar, temporal mapping of candidates.

Audio noise thwarts Mallory.

Analysis

Fabricated votes

Human adversaries

Selective denial of service

Analysis: Fabricated Votes

Fabricated vote through guessed K

- Mallory attempts to vote for c' through selection of arbitrary r".
- If |R| = |C|, then $P(K^{-1}(r'') = c') = 1 / n$.
- If |R| > |C|, then $P(K^{-1}(r'') = c') = 1 / m$.
 - Probability that $K^{-1}(r'')$ is undefined: (m n) / m
 - Invalid vote → detected attack!
- Fabricated vote through cracked T
 - Mallory increases probability that $P(K^{-1}(r'') = c')$.
 - **Solution**: Find a better CAPTCHA?

Analysis: Human Adversary

Transmission of T(K) to a human collaborator

Time-dependent protocol

Increased likelihood of detection

Architectural solutions

Analysis: Selective DoS

- Selective DoS: Mallory discards Alice's vote if it is likely that c ≠ c'.
- Mallory must learn Alice's preference.
 - Alice and Mallory's location
 - Alice's previous votes
 - Solution: Single ballot
 - Fabricated ballot
- Detection of selective denial of service
 - Educated guessing

Conclusion

Human interaction required – no efficient automated attacks

- Easy detection of large-scale attacks
- Comparison to traditional voting systems
- Future work
 - Usability data
 - Broader applications, using this protocol (possibly combined with KHAP) to form a trusted path

Questions?

