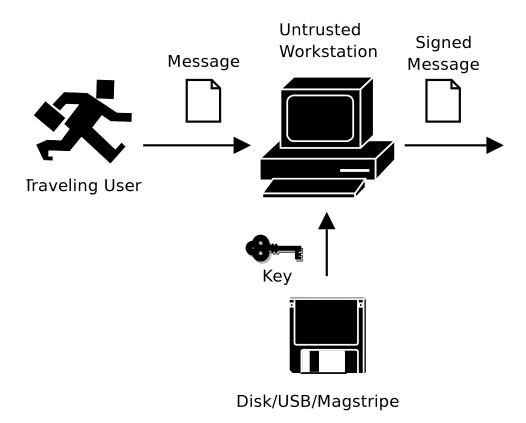
KHAP: Keyed Hard AI Problems for Securing Human Interfaces

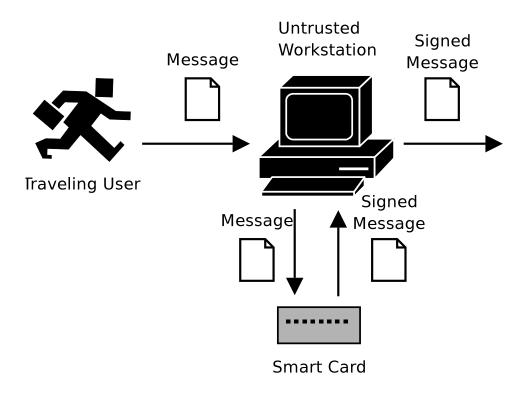
Jeff King

André dos Santos


Chaoting Xuan

Georgia Institute of Technology

Outline


- Problem Definition
- Hard AI Problems in Security
- Keyed Hard Al Problems
- Example Problems
- Protocols
- Attacks
- Conclusions

Signing a Message

- Applications: electronic vote, point-of-sale, document signing
- Problem: Key Compromise

Signing a Message – Better

- Solved: No key compromise
- Problem: what message was signed?

Hard Al Problems

- Informally, something that humans can do easily but computers can't.
- More formally (von Ahn, 2003)
 - -S a set of problem instances
 - f a function mapping instances to answers
 - For human H, H(x) = f(x) with high probability
 - Security parameters (δ, τ) -hard
 - For any algorithm A running in time τ , $Pr[A(x) = f(x)] \le \delta$
- CAPTCHA Completely Automated Turing Test to Tell Computers and Humans Apart
- Generate random message, transform it, ask human to repeat it

Transformation Problems

- Subset of hard AI problems that transform a message
- *m* − message
- T(m) problem instance from message
- f(T(m)) = m solving the problem returns original message
- Example: distort text of message so that only humans can read it
- Previous CAPTCHA is a transformation problem

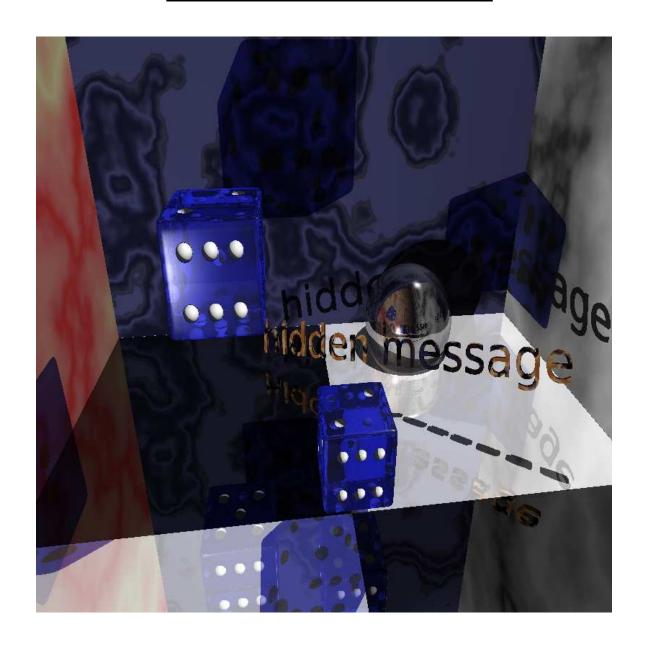
KHAP: Keyed Hard AI Problems

- A transformation problem that includes a shared secret key
- Instances generated with different keys are distinguishable
- Computers can't steal keys from messages
- Formalisms (this paper):
 - $-H_d(m,m')$ human distinguishes between messages with different keys
 - -|k-k'| difference between two keys (quantifiable?)
 - Security parameters (α, ϵ, τ) -hard
 - Given $|k-k'| > \varepsilon$, $Pr[H_d(m,m')] \ge \alpha$
 - For any algorithm A, $Pr[H_d(m, A(m', m))] \ge \alpha$
- Problem: How to quantify keys and distinguishability?
- Solution: Empirical testing?

Example Keyed Problems

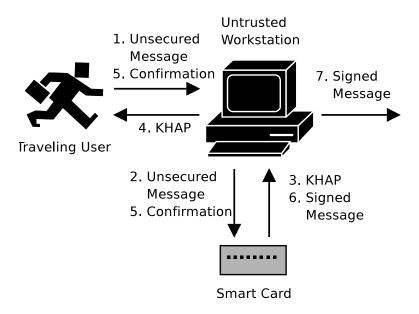
Speech Synthesis

- Transform text message into audible speech
- Human retrieves message by listening
- Key is vocal synthesis parameters (randomly select at key generation)
- Human recognizes specific voice
- Random noise on audio track makes automated analysis difficult


Handwriting

- Transform text message into image of handwriting
- Human reads message
- Key is characteristics of handwriting
- Human recognizes handwriting
- Is α (probability of distinguishing) high enough?

3-D Keyed Transformation


- Render text and objects in a 3-D scene to 2-D image (raytrace)
- Randomize parameters (lighting, position, rotation, size, colors)
- Human can read text from 2-D image
- Key is appearance of objects
- Human looks for particular objects in scene
- Scene is hard to modify in a meaningful way (shadows, reflections, finding objects)
- Provide authenticity (presence of keys) and integrity (modifications can be detected by human)

Example 3-D Instance

Protocols

- Original problem: securely interacting with a trusted platform through untrusted terminal
- Message from trusted platform to human: encode in KHAP
- Keyed transformation makes it hard to forge or tamper with messages
- Message from human to trusted platform: harder!

What to do in an Emergency

- Only human can detect cheating by terminal. What to do?
- Complain out-of-band
 - Point-of-sale tries to overcharge
 - Complain to customer service and remove charge
- Disconnect trusted platform
 - Platform waits N seconds before signing
 - User disconnects device if cheating is detected; otherwise, wait.
- Confirmation word
 - Platform waits for one-time secret message, human types message
 - Human carries pre-arranged message list?
 - Embed confirmation word in KHAP message

Attacks

- Forge KHAP message
 - Must guess key if no messages have been seen
 - Cannot extract key from message (definition of KHAP)
- Modify KHAP message
 - Hard because of AI problem domain
- Replay old messages
 - Solution: don't send duplicate messages (bad user-friendliness)
 - Solution: change key periodically (bad user-friendliness?)
 - Solution: connect confirmation to key (confirmation word in KHAP)
- Implicit confirmation (human must disconnect to cancel)
 - Solutions: reverse (not intuitive) or connect only when used (annoying)

Conclusions

- Approach is general (mobile device, network, etc)
- Secure
 - Security depends on AI problem parameters
 - Advances in AI break problems (as factoring breaks RSA)
- Easy to use
 - Avoid computation, memory aids: ask humans to do what they do best
 - Some problems are intuitive (e.g., recognizing voice)
- Issues/Future Work
 - Human attackers
 - Performance on mobile devices
 - User-friendly key changing
 - Find and analyze more schemes!

Questions?