
SCIENTIA V.12No1 (2001) 11-34

KHAP: Using Keyed Hard AI Problems
to Secure Human Interfaces

Jeff King1, Andre dos Santos1, Chaoting Xuan1

1College of Computing – Georgia Institute of Technology∗

801 Atlantic Dr – Atlanta, GA, 30332-0280, USA
{peff,andre,cxuan}@cc.gatech.edu

ABSTRACT

There is often a need for users to securely interact with a re-
mote computing system, ensuring the integrity and authenticity
of transmitted messages. Typical solutions assume that a local
trusted computing platform is available to perform cryptographic
operations, but this is often not the case. We introduce KHAP, a
protocol for using hard artificial intelligence problems to provide
message authentication checks centered around a human verifier.
We also formally introduce the notion of a keyed hard AI problem,
which is one that uses an authentication key to prove the source
and integrity of a message. We give examples of some keyed hard
AI problems, as well as examples of KHAP’s applicability to the
specific problem domains of Internet voting and the use of smart-
cards for digital signatures.

KEYWORDS Authentication, Human Verification

∗This work was supported by a grant from Microsoft Corporation.

ISSN0104−1770 c© 2001 SCIENTIAISSN0104−1770 c© 2001 SCIENTIAISSN0104−1770 c© 2001 SCIENTIA

12 SCIENTIA V.12No1

1 Introduction

Suppose Alice is on a trip to a computer security conference.
Her coworker, Bob, stays behind to watch over their cubicles.
Suddenly, Alice remembers that she forgot to send an important
memo to Bob. No problem, she thinks – there are computers avail-
able at the conference, and she can just fire off an email to Bob.
Because it’s so important, Alice is going to sign the memo. Be-
cause Alice always carries a smartcard that has her private key,
she can sign the memo. She sits down at a conference computer,
plugs her smartcard into the computer’s reader, and types out the
memo. She presses the send button, and the memo is sent to her
card for signing; the signature comes back to the computer and is
emailed with the memo to Bob. Or is it? What did the smartcard
really sign? How does Alice know it’s the same thing that was on
her screen? How does Alice even know if anything was sent to
her card?

When humans interact with computing systems, the human
often wants to know that data has reached the intended system,
and that it has not been modified in transit. Traditionally, this
issue has been dealt with by making one of two assumptions:

1. there is a direct channel between the human and the system;
the human identifies the system by its ability to transmit
on the channel, and it is assumed that an attacker is not
able to tamper with data on the channel. Examples include
Automated Teller Machines (ATM) and programs running
locally on Personal Computers (PCs).

2. the human has a direct channel to a computing platform that
he trusts at least as much as the destination system. This
trusted platform communicates with the destination system
over an untrusted channel; it uses cryptography to verify the
system’s identity and the integrity of the data. An example
is using a PC to browse a web page through an encrypted

SCIENTIA V.12No1 13

tunnel.

In our example, Alice assumed that she had a direct, secure
link to her smartcard. In reality, she was trusting the computer she
was sitting at to accurately relay the information. If the computer
was acting maliciously, it could easily have displayed one memo
on screen and sent another to the smartcard to be signed; Alice
has no way of directly communicating with the smartcard.

There are many cases where a computing system is not ac-
cessible by a direct, trusted link. The system may be physically
located far away. It may be incapable of direct interaction, as
with a typical smartcard. Likewise, the assumption that an inter-
mediate platform can be trusted is often false. The platform may
be a public system, owned and controlled by an untrusted third
party. Even if the owner is trusted, the platform may be infected
by a virus or trojan horse program. It may be possible to insert
a “false front” between the user and the system (e.g., a physical
device between a human and ATM that records account and PIN
numbers).

There is therefore a clear need for a system to allow secure
interactions with a remote trusted system. In this paper, we in-
troduce KHAP, a protocol model that allows a human to securely
interact with a remote computing system without making either
of the two assumptions listed above. The model is based on using
hard artificial intelligence (AI) problems to transform data into a
form that humans can easily decipher, but which computers have
difficulty interpreting.

Section 2 discusses existing work in this area and defines the
building blocks of the protocol. Section 3 describes the protocol
itself, while section 4 provides more concrete examples of KHAP
parameters. Security and human usability properties are discussed
in sections 5 and 6. Some more complete examples are given in 7.
Finally, we indicate future directions and conclusions in sections
8 and 9.

14 SCIENTIA V.12No1

2 Background

This section describes existing work and defines the building blocks
of the KHAP protocol.

2.1 Related Work

The problem of malicious terminals has been examined many
times. However, the focus is often on the identification of hu-
mans to computing systems (Matsumoto and Imai 1991; Hopper
and Blum 2001). Recently there has been more development of
systems focusing on humans verifying computers without the aid
of a trusted computing system.

Naor and Pinkas propose the use of visual cryptography for
message authentication (Naor and Pinkas 1997). The user carries
a printed transparency as a key; the cipher text is an image of the
same size. When a user places the transparency over the image,
the plaintext is revealed (with some amount of random noise).
Some of the problems with this system include the necessity of
carrying the transparency, and the fact that the transparency can
only be used securely a very small number of times.

Berta and Vajda propose a system of “biometric signing“ (Berta
and Vajda 2003); this system is focused on sending signed mes-
sages from an untrusted terminal. Their model focuses on a re-
mote sender verifying a signature; however, it is often useful for
the sender to verify that his message reached the destination in-
tact.

Gobioff et al describe a protocol for using a low-bandwidth
(e.g., single-bit) secure channel to achieve more complex opera-
tions (Gobioff, Smith, Tygar, and Yee 1996). They suggest chang-
ing the traditional smart card design to accommodate this secure
channel. However, this suggestion has not been adopted in prac-
tice, and is not feasible for problem domains other than smart-
cards.

SCIENTIA V.12No1 15

Recent research has attempted to exploit the intelligence gap
between humans and machines. A Human Interactive Proof (HIP)
is a method by which a computer can tell a human and a machine
apart. HIP research is mainly motivated by efforts to defend Web
services from abuse by programs. A formalization of AI problems
as security primitives can be found in (von Ahn, Blum, Hopper,
and Langford 2003).

2.2 Encryption

Our protocol model utilizes a pair of encryption/decryption func-
tions that can be performed by a human. These functions are de-
notedE andD respectively. LetP be the set of all plaintext mes-
sages,C be the set of all encrypted messages, andK be the set of
all keys.E is defined as a function mapping keys and plaintext to
ciphertext:E : P×K→C. The functionD performs the inverse:
D : C×K → P, with D(E(p,k),k) = p for all k ∈ K and p ∈ P.
Furthermore, we require that it be impossible to accurately guess
the ciphertext that a given plaintext will generate if the key is not
known. That is, for everyc∈C and everyp∈ P and everyk∈ K,
the probabilityPr[E(p,k) = c] is 1

|C| .
We will also consider the concept of the validity of an en-

crypted message. A given messagec is valid for a keyk if and
only if c∈C and there exists a plaintextp such thatE(p,k) = c. In
other words, if a given message is supposedly the result of an en-
cryption with a given key, then there must be a possible plaintext.
We use the functionV(m,k) = {true, f alse} to denote whether a
messagem is valid for a given keyk.

2.3 Hard AI Problems

The use of hard AI problems as security primitives was introduced
in (von Ahn, Blum, Hopper, and Langford 2003). We will reiter-
ate their definitions of AI problems and hard AI problems, and

16 SCIENTIA V.12No1

we will provide a definition for a specific subset of AI problems,
which we call Transformable AI Problems (TAP).

Definition 1 An AI problem is a tripleP = (I ,R, f) whereI is
a set of problem instances,R is a probability distribution over
the problem setI , and f : I → {0,1}∗ answers the instances. Let
δ ∈ (0,1]. For anα > 0 fraction of humansH, Prx←R[Hr(x) =
f (x)] ≥ δ, whereHr(x) represents a human attempt at answering
the instance, andx← R indicates the selection ofx from the dis-
tributionR.

Definition 2 An AI problemP is said to be(δ,τ)-hard if there
does not exist a programA running in time at mostτ on any input
from I , such that

Prx←D[A(x) = f (x)]≥ δ

The programA is considered to be a program running on modern
computer hardware using state-of-the-art algorithms.

Definition 3 A Transformable AI Problem (TAP) is an AI prob-
lem with the additional constraint that the hardness must come
from deciphering a data transformation. A given TAP problem
has a set of transformationsT, and a set of input messagesM.
Recall that an AI problem is given by the triple(I ,R, f). The set
of problem instancesI is defined as the set of all possible trans-
formations:{t(m) : t ∈ T andm∈M}. The instance distribution
R is again a distribution overI . The answer function,f , converts
a problem instance back to the original input:f (t(m)) = m for all
t ∈ T, m∈M.

If a TAP problem is(δ,τ)-hard, then the transformation itself
is (δ,τ)-hard:

Pr(m,t)←R[Hr(t(m)) = m]≥ δ

SCIENTIA V.12No1 17

Pr(m,t)←R[A(t(m)) = m] < δ

That is, recovery of the original message from the transformed
message has at leastδ probability for humans, but less thanδ for
current programs. Note that for some problems, computers may
perform similarly to humans (i.e., the probabilities for success
both approachδ). In this case, the gap between human computer
success can be amplified; techniques are given in (von Ahn, Blum,
Hopper, and Langford 2003).

2.4 Keyed Hard AI Problems

A keyed transformation is a data transformation that takes an ad-
ditional key parameter,k. A human with knowledge ofk should
be able to recognize the presence or absence of the key in the
transformed value. We denote the human process of distinguish-
ing two transformed values as a functionHd. The valueHd(t1, t2)
is true if and only if a human can tell thatt1 andt2 are different
values.

Definition 4 A keyed transformationT is said to be(α,ε,τ)-
distinguishable for a humanH if, for any two keysk andk′ whose
absolute difference|k−k′|> ε and for anym∈M

Pr[Hd(T(m,k),T(m,k′))]≥ α

and if there does not exist a programA that runs in timeτ such
that, givenm∈M andt = T(m,k) andm′ 6= m

Pr[Hd(t,A(m′, t))] < α

That is, a human can tell with probabilityα that two messages
were transformed with sufficiently different keys. Furthermore,
there is no current program to convert a transformed message into
a different message without creating two distinguishable values.

18 SCIENTIA V.12No1

Note that we use the notation|k− k′| to refer to the absolute dif-
ference between two keys; however, the “value” of the keys will
often not be easily quantifiable. In such a case, the ability to dis-
tinguish between two keys can be determined experimentally (i.e.,
we care only that the keys are “sufficiently different” for our pur-
poses, not about their actual values).

Definition 5 A TAP problem is(α,ε,τ)-keyed if every transfor-
mationt ∈ T is (α,ε,τ)-distinguishable.

3 KHAP Protocol Model

The participants in this model are the human,H, the remote com-
puting systemS, and a man-in-the-middle attacker,MM. It is
assumed thatH andS are able to communicate with each other,
but thatMM may block or modify messages without the knowl-
edge ofH andS. It is also assumed thatH andSmay agree on a
secret beforehand.

Furthermore,H andShave agreed on two functionsE andD,
which match the encryption and decryption functions described
in section 2.2. They have also agreed upon a TAP problem that is
(δ,τ)-hard and(α,ε,τ)-keyed. We useT(m,k) to denote the com-
putation of a problem instance wherein a transformation is chosen
randomly from the set of transformations and applied tom using
key k. The functionsHr (human extraction of a message from its
transformed state),Hd (human distinguishing of two transformed
messages), andV (verification of an encrypted message) all have
the same meanings as given in the previous sections.

The security goals are to allowH to verify with high proba-
bility that a given message originated withS, that messages from
S have arrived unmodified, and that messages sent toS have ar-
rived unmodified. The notion of “high probability“ in the goals

SCIENTIA V.12No1 19

is dependent on the hardness and keying parameters given above.
When choosing a TAP problem, participants should consider the
parameters of the problem in relation to the desired level of assur-
ance. Note that confidentiality of the transmitted information is
not a security goal.

The protocol behavior is described in the following sections.
Each section details the behavior of the two participants,H andS,
in a given situation.

3.1 S transmits to H

Assume thatShas a messagem0 that it wants to transmit toH. S
andH share two secrets,k1 andk2. H is expecting the message.
The behavior ofS is as follows:

1. Scomputesm1 = E(m0,k1)

2. Scomputesm2 = T(m1,k2)

3. S transmitsm2 to H

The behavior ofH is as follows:

1. H receivesm′2; if message does not arrive within a timeout
period,H assumes that message has been lost

2. H computesm′1 = Hr(m′2)

3. H computesvT = logical negation ofHd(m′2,T(m′1,k2)))

4. H computesvE = V(m′1,k1)

5. H computesm′0 = D(m′1,k1)

6. H believes the message to have originated withSand have
arrived unmodified if and only if bothvT andvE are true.

20 SCIENTIA V.12No1

3.2 H transmits to S

Assume thatH has a messagem that he wants to send toS. Sand
H share two secrets,k1 andk2.
The behavior ofH is as follows:

1. H transmitsm to S

2. H waits for a responser from S; if response does not occur
within a timeout period,H assumes that message did not
reachS

3. H verifies r asm2 in the previous protocol; if verification
fails, H assumes that message did not reachS intact

4. H comparesm′ = D(Hr(r),k1) to m; if not equal,H as-
sumes that message did not reachS intact

The behavior ofS is as follows:

1. Sreceivesm′

2. Scomputesr = T(E(m′,k1),k2)

3. S transmitsr to H

4 Examples of Functions

In this section, more concrete examples forE andT are given.
These lists are not meant to be exhaustive, but to provide examples
that we believe meet the definitions listed in section 2.

SCIENTIA V.12No1 21

4.1 Encryption Functions

The exact encryption function used will depend largely on the
type of messages to be encrypted. In all cases, the size of the
keyspace will be very short compared to traditional cryptography;
this is a requirement since a human must be able to remember the
key and perform the decryption manually.

Substitution One simple encryption function is message substi-
tution. That is, one message is substituted for another according
to a key. In order for this to be feasible for humans, the num-
ber of messages must be very small; furthermore, the mapping of
messages must be simple to remember. The former requirement
is subject to the constraints of the problem domain. The latter re-
quirement can be helped with the use of semantic mappings. Con-
sider an example whereM = {yes,no} andK consists of pairs of
sets of words with semantic similarity. So ifk = (fruits, cities),
thenE(yes,k) might be “apples” andE(no,k) might be “Atlanta.”

Null Encryption As a special case, we will examine the secu-
rity impacts of using the identity function (E(m,k) = m for all
m andk). This function has the advantage of requiring no effort
on the part of the user. It is also more flexible, in that the set of
messages does not need to be known beforehand.

4.2 TAP and Keyed TAP Problems

This section contains problems we believe to meet the require-
ments for TAP and keyed TAP problems. Because TAP problems
derive their hardness from a set of transformation functions, the
problems are described in terms of their transformations.

Speech Synthesis One possible scheme is to produce audible
human speech; that is, ifm is text, thenT(m,k) is a digital sound

22 SCIENTIA V.12No1

file containing the spoken text ofm. Furthermore,k is a set of
values modeling the vocal properties of a speaker such that for
someε, T is (α,ε,τ)-distinguishable.

The key is a representation of a human vocal tract. This is
typically represented as a plot of frequency against time called a
cepstrum. There is significant research in the area of modeling
vocal parameters (Monrose, Reiter, Li, and Wetzel 2001).

To generate a key,Schooses random values within the vocal
model (within some parameters that still represent human voice).
H is “trained” on the voice by listening to several samples pro-
duced by it. Note thatH does not have specific knowledge of the
key, since it would be difficult to remember and useless for man-
ual computation. However, the memory of the voice allowsH to
perform the distinguishability test.

When S wishes to computeT(m,k), it first synthesizes the
voice based on the model given byk (H must have been previ-
ously trained to recognizek). Then it may apply a filtering trans-
formation that adds noise to the resulting audio file. Examples of
such transformations are described in (Kochanski, Lopresti, and
Shih 2002). The purpose of the noise is to mask the speech in
such a way that humans can still understand and recognize it, but
computer speech recognition systems are thwarted.

A human may computeHr(m) merely by listening to the audio
file and understanding the spoken words.Hd consists of correctly
identifying the vocal properties of the speaker.

3D Rendering A three dimensional (3D) rendering problem is
a TAP problem defined by the tuple(L,S,N,F) whereL is a set
of scene names,S is a set of 3D renderable scenes,N is a function
mapping each scene namel ∈ L to a set of sceness⊂ S, andF is
a function mapping textm∈M to a 3D renderable version of the
text.

The keyk is an ordered list of scene names. To compute
T(m,k), the remote computing systemS performs the following

SCIENTIA V.12No1 23

algorithm:

foreach l in k do
randomly choose a scene, s, from a uniform distribution

over the set N(l)
insert F(m) into the scene
randomly choose a camera location within the scene
render the scene

done

T(m,k) returns the ordered list of rendered scenes.H must
be able to recognize the scene name based on a rendering of the
scene;H can distinguish messages produced by different keys by
the presence and ordering of specific scenes (he must therefore re-
member the ordering of the scenes in his key). ComputingHr(m)
consists of reading the text found within the scene.

For example, consider a key that consists of one label, “house.”
The remote computing systemSrandomly selects a scene it knows
about that matches “house.” It inserts a 3-D version of the text into
the scene and raytraces the result to a 2-D image. WhenH sees
the image, he extracts the text by reading it. He verifies the key
by confirming that the scene is one of a house.

In order for an attacker to computeA(T(m)), he must be able
to identify the text within the scene, convert it to its original model,
and perform the inverse ofF .

Keyless Transformation Some problems believed to be hard
TAP problems are already known; these are described in (Kochan-
ski, Lopresti, and Shih 2002; von Ahn, Blum, Hopper, and Lang-
ford 2003). We will examine the security implications of using
keyless TAP problems with KHAP. These functions have the ad-
vantage that they are already being analyzed and used in produc-
tion systems. They also may have a stronger hardness guarantee
and may put less burden on the user.

24 SCIENTIA V.12No1

5 Security Analysis

This section considers some possible attacks byMM and describes
the role of theE andT functions.

5.1 MM discards messages

It is always possible forMM to discard messages and perform a
Denial of Service attack. However,H assumes the worst in the ab-
sence of an expected message. It is therefore not possible by dis-
carding a message forMM to trick H into thinking that a message
was successfully delivered. In the case of unexpected messages
(from Sto H), it is possible to silently discard the message without
H realizing. It is assumed that the underlying message protocol
will perform in such a way thatSdoes not send unexpected mes-
sages, or that missing such messages will not be a serious security
breach.

5.2 MM modifies message in transit

Assume thatH sends a message toS, andMM changes the mes-
sagem in transit tom′. Sreturns the transformed messager ′ such
that r ′ = T(E(m′,k1),k2). MM interceptsr ′ and must sendr to
H such thatHd(r,T(E(m,k1),k2)) is false andD(Hr(r ′),k1) = m.
That is,MM must compute a value forr such thatH is fooled into
thinking it was computed byS. Furthermore, the computedr must
correctly decrypt to the original message sent byH. MM knows
r ′ andm because it intercepted them in transit. It also knowsm′,
since that is the forged message it has created.

We will examine the implications when using keyed and reg-
ular TAP problems in conjunction with null and non-null encryp-
tion functions.

SCIENTIA V.12No1 25

Keyed Transformation and Non-Null Encryption Assume that
the participants are using a keyed hard TAP problem and non-
identity encryption.MM’s attack consists of the following steps:

1. MM attempts to breakE through cryptanalysis over multi-
ple runs. Because the encryption key is short enough for a
human to use, it is likely that cryptanalysis will be fruitful
if enough plaintext-ciphertext pairs are captured and recog-
nized byMM. For some problem domains,MM can po-
tentially stimulate multiple runs by repeatedly sending fake
requests toS.

The plaintextm is known toMM. However, the cipher-
text c = E(m,k1) may be difficult to acquire, since it re-
quiresc = A(T(c)) (that is, reversing the AI transforma-
tion), which is believed to be hard. Some instances where
it may be possible to recognize the ciphertext include:

• A malicious human may computeHr(T(c)) and feed
the result to a computer for cryptanalysis.

• MM may have a low but statistically significant proba-
bility of computingA(T(c)). Over a sufficient number
of attempts, enough data may be collected for suc-
cessful cryptanalysis. The exact details depend on
the (δ,τ)-hard parameter of the specific transforma-
tion used.

2. If E is broken, thenMM may easily computec = E(m,k1)
without knowingk1. However, he still must computer such
that it is indistinguishable fromT(c,k2). But following the
definition of a keyed transformation (section 2.4), no pro-
gram exists to computer with probability greater thanα.

In order to succeed in foolingH, MM must successfully complete
both steps.

26 SCIENTIA V.12No1

Null Encryption If the identity function is used for encryption,
then clearly the first step becomes trivial.MM needs only to com-
plete the second step, producing a keyed transformation that fools
H.

Non-Keyed Transformation If a regular TAP problem is used
to provide the transformation step, then the second step becomes
trivial. The integrity of the system relies solely on the inability of
MM to break the encryption function, as shown in the first step.

Non-Keyed and Null If a keyless transformation is used with
the identity function, then both steps become trivial. In this case,
the protocol is providing no assurance whatsoever of the integrity
of messages.

S sends toH If we assume thatMM is able to guess the mes-
sage, thenMM’s task is identical to the one described above,
with one caveat:H does not already know the contents of the
message. ThereforeMM does not have to constructr such that
D(Hr(r),k1) = m, but rather such thatV(Hr(r),k1) is true (that is,
such that the message is a possible, valid one). This is still not
trivial, but allows the possibility that rather than breakingE, MM
sends random (possibly valid) messages. This is not likely to be a
problem, as a human receiving a string of unintelligible messages
will presumably become suspicious.

5.3 Replay Attacks

MM may mount a replay attack by saving valid messages sent
betweenH andS and resending them later. The duplicate mes-
sages may be used to repeat operations or may have an unexpected
meaning in a different context.

KHAP doesn’t directly deal with replay attacks; however, it
is simple to incorporate prevention measures into a protocol that

SCIENTIA V.12No1 27

uses KHAP. For messages fromS to H, Scan insert a timestamp
into outgoing messages that is authenticated along with the mes-
sage contents. The timestamp may be based on either wall clock
time or a monotonically increasing arbitrary value.

In the case of an arbitrary value,H must keep track of the
value and verify that it increases in each message. In order to pre-
vent replay attacks across sessions,H must remember the current
value until the next session. This may be prohibitively difficult
for most humans.

Using wall clock time provides a convenient global timer. The
clock must not reset, so it must contain the full date and time to a
resolution oft time units.H confirms that the timestamp on each
message is increasing; thereforeS cannot send more than one
message in eacht interval. H must also confirm that the times-
tamp is withins units of his current idea of the time (based on an
independent clock). While some clock skew is inevitable between
SandH, the skew can be overlooked byH if it is smaller thans.

In the case that an attacker replays a message fromH to S, the
situation is somewhat more complex.H will not be expecting any
messages fromS, and so cannot participate in the verification. In
fact, KHAP takes no precautions to prevent arbitrary forged mes-
sages being sent toS. It is up toS to use a different mechanism
to authenticate messages fromH, such as a traditional password;
the use of such methods is outside the scope of this paper. On the
other hand, ifS is a device that can be turned off, like a smart-
card, these attacks cannot happen arbitrarily. They can occur only
when the card is on, such as when the smartcard is plugged in to
a malicious terminal.

28 SCIENTIA V.12No1

6 Human Requirements

One of the most important aspects of this system is usability by
humans. The behavioral description of the protocol spells out sev-
eral steps for the user to perform; however, most of these steps
should occur naturally and easily (without the need to follow a
memorized script).

The human must be able to “time out” when messages fail to
arrive; it is natural for users to expect computers to react reason-
ably quickly. If a response does not arrive within what a human
considers a reasonable time, it can be considered to have timed
out.

The human must also be able to computeHr(m) for a given
messagem. The definition of an AI problem gives at leastδ prob-
ability of success for a human. In practice, this step may consist
of operations as simple as reading or listening to the messagem.

The human must be able to distinguish between messages
transformed with the correct key, and those that have been forged.
The definition of a distinguishable transformation gives at leastα
probability of success in distinguishing correct and forged values.
This step should not involve a great deal of effort; for example,
in the speech example transformation given above, the cognitive
process verifying the speaker’s voice happens subconsciously.

The human must also be able to computeD(m,k). The diffi-
culty of this step depends on the exact encryption function used.
The function must be simple to compute. Ideally it should have
low key storage requirements, but in some cases it may be accept-
able for the user to carry additional storage (e.g., a piece of paper).
In practice, this is probably the step that requires the most effort.

It is possible to reduce the total effort required and increase
the chances of success by using a non-keyed transformation or
null encryption. However, in any application of this model, the
balance of usability versus the security properties listed in section
5 should be taken into account.

SCIENTIA V.12No1 29

The result of the KHAP protocol is that the human partici-
pant can verify whether data was modified in transit. However, it
specifies no behavior forH when a disruption is detected. This
behavior will largely be dependent on the problem domain, but
some general solutions are mentioned here.

Out of Band Channels It may be possible forH to contactS
using another channel. For example, if a user detects a forgery at
an ATM, he may be able to contact the bank by telephone.

Retry Elsewhere In some instances, the effects of a modified
message may be nullified by a subsequent message. For example,
consider an Internet voting service where only the last vote that
has been cast is counted. If a user detects a forgery at one ma-
chine, he may try again later from a different location, replacing
any potentially forged vote.

Single-bit Communication In some cases, it may be possible
to send a single bit of information to the remote system. For ex-
ample, consider a smartcard system for signing documents. A
user types in a document and sends it to the smartcard for sign-
ing. The smartcard computes the signature but doesn’t transmit
it. Instead, it transmits a KHAP-encoded confirmation to the user
and waits for a pre-determined timeout period (e.g., 60 seconds).
At the end of the timeout period, the card releases the signature.
If the user detects a forgery, he removes the smartcard from the
reader before the timeout period has expired (if he receives no
response at all, he assumes the message was not received and re-
moves the card). Thus the bit is set if the card is left in and unset
if the card is removed. The single bit translates to commands of
“sign the document” or “don’t sign the document” to the card.

30 SCIENTIA V.12No1

7 Use Cases

Because the exact transformations and encryption used depend
somewhat on the problem domain, it is useful to examine some
specific applications. This section describes some potential se-
quences of events. The exact details of the transformations in
each scenario are meant to show the wide variety of possibilities.

7.1 Electronic Voting

Alice wants to vote electronically at a public Internet terminal.
She has a smartcard which will sign her vote, and both she and
the card know that their shared key is “cows”. Alice plugs her
smartcard into the terminal and makes two votes.

The first vote is a referendum, and she votes “yes.” The termi-
nal sends “1 yes” to the smartcard, which cryptographically signs
her vote and sends it anonymously to the vote tallier. The smart-
card returns a three dimensional rendering of a group of cows in a
field spelling out the string “1 yes”. Alice reads the text, verifies
that it matches her vote, and verifies that cows are involved.

The second vote is between several candidates. Alice pro-
duces a write-in vote of “Mickey Mouse.” The terminal mali-
ciously sends “2 Donald Duck” to the smartcard, which it signs
and sends to the vote tallier. The terminal receives back a render-
ing of “2 Donald Duck“ branded onto a cow. To try to fool Alice,
the terminal renders her original vote, “Mickey Mouse” next to
a picture of some sheep. Alice verifies that the vote matches her
intent, but is alarmed that there is no cow in the picture.

Alice removes her card from the machine. Later that day, she
is at a different public terminal. She inserts her card and recasts
her second vote. The voting authority receives her vote and re-
places the old, malicious vote with her new vote. She may also
anonymously telephone the voting authority to lodge a complaint
with the original terminal.

SCIENTIA V.12No1 31

7.2 Document Signing

Recall the example from the beginning of the paper. Alice wants
to send a signed document to Bob using her smartcard, but only
public conference terminals are available. Fortunately, Alice is
presenting a paper on KHAP, and so she has her key ready. Alice’s
key is a set of speech patterns that were randomly generated; when
text is synthesized using the patterns, the resultant voice is easily
recognizable to Alice, who has heard it several times before (when
using her smartcard). Note that Alice could not easily describe the
characteristics of the voice. Fortunately, she doesn’t need to; she
need only distinguish the voice from other voices.

Alice types the memo into the terminal’s word processor pro-
gram and requests that it be sent to her card for signing. The card
simultaneously signs the data and produces a synthesized version
of the text. It does not release the signature from the card, but
returns an audio file of the synthesized voice. The card then waits
for the length of the audio stream plus thirty seconds. If it has
received no input by that point, it releases the signature. If the
card is removed from the reader, it obviously cannot release the
signature.

Alice listens to the voice reading her memo, confirms that it
is the voice she recognizes and the text is what she wrote, and
waits ten seconds (a timeout period she has pre-determined with
the card) for the signature.

8 Future Work

There are several issues with KHAP that have yet to be addressed.
Because of the nature of hard AI problems, there is no way

to formally prove that they will remain hard; it is merely the con-
sensus of the AI research community that there is no solution for
a particular problem. It is therefore critical to further investigate

32 SCIENTIA V.12No1

specific implementations of KHAP.
It may be possible in some circumstances to gain some knowl-

edge of a specific transformation key over a large number of mes-
sages. For example, imagine a system that uses messages encoded
as speech with a particular voice key. If an attacker starts with a
guess as to the key and refines his estimate as more messages are
heard, eventually the difference between his estimate and the key
will drop below ε, making the two indistinguishable. One pos-
sible way to counter this would be to “age” the key; that is, to
change it over time such that the rate of change is greater than the
rate at which an attacker’s estimate improves. If the changes are
small enough, then a user will not be able to distinguish them over
a small set of changes. Over a larger set of changes, the user will
be incrementally “retrained” from message to message.

One implementation obstacle is the computational power re-
quired to perform the transformations. In particular, is it feasible
to have a smartcard synthesizing speech or rendering 3D models?
Where are the models stored? A possible solution to this is to use
external computation and storage. A smartcard may be able to use
encrypted auxiliary storage (Maheshwari and Vingralek 2000) to
hold the rendering models or the data required for speech synthe-
sis. If a remote coprocessor is available, the smartcard may be
able to offload some of the computation (Yee 1994).

9 Conclusions

The use of both malicious terminals and hard AI problems in se-
curity are relatively new areas of research brought about by the
recent ubiquity of networked computing.

We have introduced KHAP, a system for using hard AI prob-
lems to provide data integrity from a malicious terminal in some
common circumstances. We have shown that given a sufficiently

SCIENTIA V.12No1 33

hard AI problem, using KHAP succeeds in securing data integrity
between a human and a computing system. We have also shown
that KHAP-based protocols can be feasibly performed by humans.

Furthermore, we have introduced the concept of keyed AI
transformations, a security primitive that can be used in a variety
of other protocols both to hide data from automated adversaries
and to attach authentication to specific messages. Previous work
has demonstrated the use of hard AI problems as security primi-
tives (von Ahn, Blum, Hopper, and Langford 2003); however, we
believe this to be the first use of AI problems for message authen-
tication.

Referências

Berta, Istvn Zsolt and Istvn Vajda (2003). Documents from
malicious terminals. InSPIE Microtechnologies for the
New Millenium 2003, Bioengineered and Bioinspired Sys-
tems, Maspalomas.

Gobioff, H., S. Smith, J. Tygar, and B. Yee (1996). Smart-
cards in hostile environments. InProceedings of the Second
USENIX Workshop on Electronic Commerce.

Hopper, Nicholas J. and Manuel Blum (2001). Secure hu-
man identification protocols. InProceedings of the 7th In-
ternational Conference on the Theory and Application of
Cryptology and Information Security, pp. 52–66. Springer-
Verlag.

Kochanski, G., D. Lopresti, and C Shih (2002, Setembro). A
reverse turing test using speech. InProceedings of the Sev-
enth International Conference on Spoken Language Pro-
cessing, pp. 1357–1360. Denver, Colorado.

Maheshwari, Umesh and Radek Vingralek (2000, Outubro).

34 SCIENTIA V.12No1

How to build a trusted database system on untrusted stor-
age. InProceedings of the 4th Symposium on Operating
Systems Design and Implementation, pp. 135–150. San
Diego.

Matsumoto, T. and H. Imai (1991). Human identification
through insecure channel. In D. W. Davies (Ed.),Advances
in Cryptology – EUROCRYPT 91, Volume 547 ofLecture
Notes in Computer Science, pp. 409–421. Springer-Verlag.

Monrose, Fabian, Michael K. Reiter, Qi Li, and Susanne
Wetzel (2001, Maio). Cryptographic key generation from
voice. InProceedings of the IEEE Symposium on Security
and Privacy. Oakland, California.

Naor, Moni and Benny Pinkas (1997). Visual authentication
and identification. InAdvances in Cryptology – Crypto ’97,
Volume 1294 ofLecture Notes in Computer Science, pp.
322–336. Springer-Verlag.

von Ahn, Luis, Manuel Blum, Nicholas J. Hopper, and John
Langford (2003). CAPTCHA: Using hard AI problems for
security. InAdvances in Cryptology – Eurocrypt 2003, Vol-
ume 2656 ofLecture Notes in Computer Science. Springer-
Verlag.

Yee, B. S. (1994).Using Secure Coprocessors. Ph.D. thesis,
Carnegie Mellon University.

